184 research outputs found

    The Complete Mitochondrial Genome of an Atlantic Ocean Shortfin Mako Shark, Isurus oxyrinchus

    Get PDF
    We report the first complete mitochondrial genome of a shortfin mako shark from the Atlantic Ocean. The genome had 16,700 base pairs and contained 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding D-loop. There were 81 individual differences compared to the published mitochondrial genome of a shortfin mako from the Pacific Ocean, with most variability found in protein coding genes, especially ND5, ND3, and ND1. These highly variable genes may be useful population markers in future studies, and availability of a second mitogenome will assist with future, genome-scale studies of this IUCN Endangered species

    Mitochondrial genome of an Atlantic white shark (Carcharodon carcharias)

    Get PDF
    Here we report the first full mitochondrial genome sequence for a white shark caught in the Atlantic Ocean. The mitochondrial genome is 16,745 bp in length and contains 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding control region. The base composition of this mtDNA lineage is A: 30.7%, C: 26.9%, G: 13.8%, and T: 28.6%. In concordance with previous population genetic studies, the Atlantic caught individual forms a separate lineage from individuals caught on either side of the Pacific Ocean

    White Shark Genome Reveals Ancient Elasmobranch Adaptations Associated with Wound Healing and the Maintenance of Genome Stability

    Get PDF
    The white shark (Carcharodon carcharias; Chondrichthyes, Elasmobranchii) is one of the most publicly recognized marine animals. Here we report the genome sequence of the white shark and comparative evolutionary genomic analyses to the chondrichthyans, whale shark (Elasmobranchii) and elephant shark (Holocephali), as well as various vertebrates. The 4.63-Gbp white shark genome contains 24,520 predicted genes, and has a repeat content of 58.5%. We provide evidence for a history of positive selection and gene-content enrichments regarding important genome stability-related genes and functional categories, particularly so for the two elasmobranchs. We hypothesize that the molecular adaptive emphasis on genome stability in white and whale sharks may reflect the combined selective pressure of large genome sizes, high repeat content, high long-interspersed element retrotransposon representation, large body size, and long lifespans, represented across these two species. Molecular adaptation for wound healing was also evident, with positive selection in key genes involved in the wound-healing process, as well as Gene Ontology enrichments in fundamental wound-healing pathways. Sharks, particularly apex predators such as the white shark, are believed to have an acute sense of smell. However, we found very few olfactory receptor genes, very few trace amine-associated receptors, and extremely low numbers of G protein-coupled receptors. We did however, identify 13 copies of vomeronasal type 2 (V2R) genes in white shark and 10 in whale shark; this, combined with the over 30 V2Rs reported previously for elephant shark, suggests this gene family may underlie the keen odorant reception of chondrichthyans

    Serologic Responses in Childhood Pulmonary Tuberculosis.

    Get PDF
    BACKGROUND: Identification of the Mycobacterium tuberculosis immunoproteome and antigens associated with serologic responses in adults has renewed interest in developing a serologic test for childhood tuberculosis (TB). We investigated IgG antibody responses against M. tuberculosis antigens in children with well-characterized TB. METHODS: We studied archived sera obtained from hospitalized children with suspected pulmonary TB, and classified as having confirmed TB (culture-confirmed), unlikely TB (clinical improvement without TB treatment), or unconfirmed TB (all others). A multiplexed bead-based assay for IgG antibodies against 119 M. tuberculosis antigens was developed, validated and used to test sera. The area under the curves (AUCs) of the empiric receiver-operator characteristic curves were generated as measures of predictive ability. A cross-validated generalized linear model was used to select the most predictive combinations of antigens. RESULTS: For the confirmed TB versus unlikely TB comparison, the maximal single antigen AUC was 0.63, corresponding to sensitivity 0.60 and specificity 0.60. Older (age: 60+ months old) children's responses were better predictive of TB status than younger (age: 12-59 months old) children's, with a maximal single antigen AUC of -0.76. For the confirmed TB versus unlikely TB groups, the most predictive combinations of antigens assigned TB risk probabilities of 0.33 and 0.33, respectively, when all ages were considered, and 0.57 (interquartile range: 0.48-0.64) and 0.35 (interquartile range: 0.32-0.40) when only older children were considered. CONCLUSION: An antigen-based IgG test is unlikely to meet the performance characteristics required of a TB detection test applicable to all age groups

    Analysis of reach-scale elevation distribution in braided rivers: Definition of a new morphologic indicator and estimation of mean quantities

    Get PDF
    This work has been carried out within the SMART Joint Doctorate (Science forthe MAnagement of Rivers and theirTidal systems) funded with the support of the Erasmus Mundus programme of the European Union. Data of the Rees River were derived as part of UKNatural Environment Research Council grant (NE/G005427/1) awarded to PI Brasington, along with further support from the NERC Geophysical Equipmen tFacility (Loan 892) and Leverhulme Trust IAF2014-03

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore